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Abstract—Computer simulation of general microwave nonlin-
ear circuits excited by a large number of input tones is addressed.
The algorithm, based on the spectral-balance method, uses novel
index-vector and convolution-matrix generation techniques. That,
in conjunction with a new nonlinear-device modeling approach
(which directly takes into account the higher order derivatives
of the I=V and Q=V characteristics), allowed the prediction of
such complex behavior as spectral regrowth and noise–power
ratio (NPR) tests of a class-B power amplifier or multitone
intermodulation phenomena in a saturated multioctave amplifier.

Index Terms— Computer-aided analysis, frequency-domain
analysis, nonlinear circuits, nonlinear distortion.

I. INTRODUCTION

RECENT advances in telecommunications systems, partic-
ularly broad-band services and mobile networks, contin-

uously present new challenges to microwave computer-aided
design (CAD) tools. On one hand, to achieve higher output
power and efficiency, amplifier circuits are being pushed
to saturated classes of operation. While on the other hand,
circuit-design linearity is permanently driven by improved
system performance. Due to the complex nonlinear phenomena
involved, microwave engineers no longer rely on the classic
single-carrier or two-tone tests. Alternatively, they are seeking
new characterization procedures like the observation of the
spectral regrowth produced in a nonlinear circuit excited
by a modulated carrier or even the identification of the
newly generated spectral components when the circuit is
expected to handle a very large number of input tones—the
so-called noise–power ratio (NPR) test. Accompanying that
scenario, an obvious need to incorporate prediction facilities
of these experiments in today’s microwave CAD simulation
tools appeared. However, until now, the problem of simulating
the response of a strong nonlinear circuit driven by a complex
spectral signal in a digital computer was virtually unsolved. In
fact, neither an efficient and reliable nonlinear analysis method
is available, nor are the modeling procedures normally adopted
for microwave electron devices sufficiently mature to accu-
rately describe both small- and large-signal intermodulation
distortion (IMD) behavior.
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For what the analysis method is concerned with, both the
time-domain (SPICE-like programs [1]) and the hybrid time-
domain/frequency-domain-based packages (harmonic-balance
(HB) programs [2]) cannot be directly applied.

The nonexistence of time-domain representations of some
microwave components (e.g., dispersive transmission media
or discontinuities) associated with the widely known long
computer runs needed to find the steady-state regime of
even the simplest microwave circuit gave SPICE a rapidly
decreasing acceptance in the microwave design field.

This space was rapidly filled by HB, which proved itself
an invaluable tool for predicting the nonlinear regime under
single sinusoid excitation. However, when multitone operation
is the objective, HB still presents many difficulties, which
are mainly due to the required successive application of
the discrete Fourier transform (DFT). Because of that, some
exact alternatives (e.g., multidimensional Fourier transform
(MDFT) [3], or approximate methods such as the almost-
periodic Fourier transform (APFT) [4]) have been proposed,
which are too heavy when the input signal is composed of
more than two or three incommensurate tones.

Very recently, some hybrid alternatives based on the time-
domain integration of the envelope baseband signal [envelope
simulators (ES’s)] [5], [6] were especially proposed to solve
that kind of simulation problem. Since they were conceived to
deal with single-modulated carrier excitations, they have been
successfully applied to the simulation of spectral regrowth and
narrow-band NPR, but they suffer from an inherent disadvan-
tage: they are restricted to driving signals that occupy a small
percentage of the nonlinear circuit’s bandwidth. Therefore,
they will not be useful in simulating responses of circuits
where the available bandwidth is fully utilized. Also, due to
their need to treat the circuit excitation as a carrier modulated
by some time-domain baseband signal, they appear to be
unable to handle practical input spectra, such as more than
one modulated carrier.

From this brief overview, one can conclude that, at least
these days, the best way to solve the problem of simulating
nonlinear circuits driven by general multitone signals is to
select one of the available analytical methods that oper-
ate entirely in the frequency domain: Volterra series [7] or
frequency-domain HB: spectral balance (SB) [8].

Despite the many advantages presented by the Volterra
series method, which makes it the ideal tool for simulating
all types of small-signal intermodulation phenomena, it is

0018–9480/98$10.00 1998 IEEE



BORGES DE CARVALHO AND PEDRO: MULTITONE FREQUENCY-DOMAIN SIMULATION OF NONLINEAR CIRCUITS 2017

restricted to mild nonlinear regimes [9]. Thus, it is useless
for predicting the nonlinear responses of any saturated circuit.

The SB algorithm is especially appropriate for this problem
as it picks up the frequency representation of the excitation (the
domain where it is normally perceived and best described in
the microwave field) and provides an output in the same form.
It performs all simulation steps without passing through time
domain, thus obviating the need for any Fourier transform.
However, it still presents some implementation problems,
which prevent its spread. In this paper, we will start by making
a review of the SB technique and then address some of its key
points. Some new ideas to overcome this problems will then
be proposed, which will enable the reliable application of the
SB analysis technique to strong nonlinear circuits driven by
multitone spectra.

The other nonlinear simulation issue that was mentioned at
the beginning of this section was the adopted device modeling
functional form. As is widely known, accurate prediction
of IMD behavior requires electron-device-model descriptions
that represent not only the or characteristics, but
also its higher order derivatives [10]. Also, SB implemen-
tations require that the device model has some polynomial
(or rational function) form. Techniques usually followed to
construct these mathematical approximants consist of a simple

and curve fitting. In the following sections a
systematic procedure to determine anth-order approximant
that osculates with the function and its firstderivatives will
also be discussed.

Finally, this paper presents various simulation scenarios of
spectral regrowth, NPR, and multitone IMD, and compares
simulated and experimental results of nonlinear multitone ex-
citation regime obtained from a microwave class-B amplifier.

II. SB REVISITED

The SB concept is similar to the well-known HB. As was
already told, what distinguishes it from HB is the ability to cal-
culate the circuit’s response spectra entirely in the frequency
domain. In fact, all functional steps of both algorithms are
equal, except that no mapping of frequency and time domains
is needed.

Since each of these steps is already well discussed in the
literature [11]–[13], we will focus our attention on those that
are more important to the SB.

The first of these is the generation of the mixed-frequency
index vector. This index vector is essential to both the HB
and SB algorithms because it will give the size and frequency
position of the circuit unknowns. Furthermore, the size of this
vector will determine the dimension of the Jacobian, which is
the largest matrix involved in the algorithm.

In [14] and [15], the index vector was calculated using some
nested loops and the following formula:

(1)

where the harmonic number of are integers, and
are the input frequencies of each excitation tone.

This way of calculating the index vector is very time
consuming and can generate equal frequency positions in the

vector. Therefore, some sorting algorithm is further needed
to organize the vector and to exclude redundant frequencies.
In Section III, a new way to calculate the index vector which
overcomes these problems will be presented.

In SB, a convolution matrix is needed to perform time-
domain multiplication’s and divisions in the frequency domain.
This problem has already been studied by Rhyne and Steer [14]
and N̈arhi [15]. Steer used a mixed algorithm that includes
a mapping function and an auxiliary routine, which creates
the matrix [16]. Other authors [17] follow similar procedures
when they use a mix of two or three algorithms to generate the
convolution matrix. However, until now, no one had associated
those techniques with the well-known linear convolution.
Thus, a new way to generate the convolution matrix based
on the linear convolution will also be presented in Section III.

The main idea under the SB algorithm consists of obtaining
the current responses of the circuit’s nonlinear elements to
the applied control voltages, directly in the frequency domain.
Therefore, any nonlinear active device model should be de-
scribed by some basis functions for which spectra calculations
are not a too difficult task. One way to select those basis
functions is to simply rely on the elementary arithmetic
operations since time-domain addiction and subtraction have
a direct correspondent in the frequency domain and multi-
plication and division can be mapped to spectral convolution
and deconvolution. That idea, originally introduced by Chang
and Steer [18], and named the arithmetic operator method
(AOM), requires that any model should be represented by a
combination of these elementary operations. One way to do
that is to use polynomial or rational functions as the selected
model’s approximant.

This type of restriction is not really specific to the SB
method. In fact, when traditional time-domain models are
used, complex functions are also evaluated using some kind of
approximant decomposable in the four elementary arithmetic
operations. The only difference is that, there, the fitting process
(usually a decomposition in continued fraction expansions) is
implicit since it is embedded in the computer.

Steer [8] used a generalized power series as the approx-
imation process, but the development was too complex. In
[19], Steer uses a more general algebraic analytical form.
Närhi [17] considers the nonlinearity as a black box and
approximates it using Chebyshev polynomials/rationals that
are more robust to strong nonlinearities. Eijnde [20], [21]
uses a rational approximant, which is derived using minimum
squares fitting in order to represent strong nonlinearities with
fewer terms.

All of these approximants need only information of the
or curves, providing no control of the functions’ higher
order derivatives.

Since it is now perfectly understood that the model’s higher
order derivatives determine the generation of intermodulation
products [10], a new type of approximant, the Hermite rational,
conceived to accurately represent the function and its first
derivatives, will be presented in Section IV.
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TABLE I
OUTPUT INDEX VECTOR GENERATED BY THREE

TONES MIXED UP TO FIFTH ORDER

III. N EW INDEX TECHNIQUE AND CONVOLUTION MATRIX

A. Index-Vector Generation

If the input-signal spectrum can be considered as regular
(such as the one previously used by Ngoya and Obregon [22],
and redefined here as , where is the
input frequencies, is the first component, and is the
frequency step), we found that it is possible to determine the
whole mixing vector using only very simple formulas.

To exemplify, let us consider an input-signal spectrum
composed of three tones: 1, 1.001, and 1.002 GHz, and a
sought output simulation result until the fifth mixing order.
The positive part of the index vector is represented in Table I,
where the output frequency components were distributed in
rows in ascending order.

By inspection, one can easily conclude that the result-
ing spectrum may be interpreted as being constituted of six
narrow-band groups of tones, regularly separated by(plus
their negative counterparts), centered at dc—0 Hz,—1.001
GHz, —2.002 GHz, —3.003 GHz, —4.004 GHz,

—5.005 GHz, and having the following widths or number
of tones each: dc—9, —11, —9, —11, —9,
and at —11.

In general, it was found that the central mixing frequencies
could be obtained by

if number of tones is even
if number of tones is odd

(2)

with and the input central frequencies andthe non-
linear order; while the correspondent spectral widths located
around the central frequency may be calculated from

number of newly generated tones (3)

with the number of original tones, and the maximum
even or odd order for even or odd harmonics, respectively, as
can be easily observed from Table I.

Further using the input spectrum regularity, it can also
be easily observed from Table I that it is only necessary to

calculate the spectral widths for the maximum order ofand
because lower orders of equal parity have the same

spectral width.
With this type of closed formulation, the latter problems

presented in Section II were resolved. In fact, it is now
possible to generate the index vector using only approximate

steps, where ( is ), instead
of the steps required by the previous technique of
Steer and N¨arhi [14], [15]. For the example depicted in Table I
( and ), only 90 loops were sufficient to determine
the whole index vector, against the 1331 loops that would be
required by the previous techniques. The difference has a fast
increase as grows.

In addition, the present formulation obviates the referred
need to use some kind of sorting algorithm, as it does not
produce any distinct vector positions of equal frequency.
Therefore, significant amounts of simulation time and memory
requirements for saving the convolution and Jacobian matrices
may be earned, compared to other commercially available HB
implementations like MDS.1

Although those benefits were, in fact, a direct consequence
of the considered input spectrum symmetry, it will be shown
later that this kind of excitation is quite suitable for rep-
resenting a lot of real telecommunication signals, like the
ones encountered in frequency mixers, uniformly discretized
continuous spectra, and pseudorandom sequences used in
digital circuits.

B. Convolution-Matrix Generation

For better understanding the convolution-matrix generation
process now proposed, let us consider the usual linear convo-
lution formula

(4)

where is the number of samples, and are the
convolution sampled vector operands, andis the result:

. If, for illustration purposes, 13 samples are chosen
and , (4) can be put into a
graphic form, as shown in Table II. It can be seen that the
numbers between the slashed lines constitute the so-called
associated convolution matrix defined by .

Consider now that two equal spectral vectorsand must
be convolved. Each vector has an associated mixed-frequency
index vector, which is generated using the technique explained
above. If, for simplicity, a two-tone spectrum is under con-
sideration, then the input frequency-component positions and
their values can be seen in Table III.

The convolution of will be done using the same
graphical procedure used for the linear convolution. Since the
amplitude vector is equal to the one previously considered
(see Table II), the amplitude convolution matrix is also equal,
but now, different mixing frequencies will appear. Thus, if

1MDS, HP 85150B Microwave and RF Design Systems, Hewlett-Packard
Company, Santa Rosa, CA, 1994.
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TABLE II
GRAPHICAL LINEAR CONVOLUTION PROCEDURE

TABLE III
INPUT FREQUENCY VECTOR

TABLE IV
SAMPLE COMPONENTS OF THEFREQUENCY

CONVOLUTION MATRIX

the convolution is done on the frequency vector, the result-
ing frequency components can be obtained as the samples
represented in Table IV.

In the right column of Table IV, there are some mixing
components that have orders greater than two, which do
not belong to the mixing-frequency index vector. Thus, it
is obvious that these unwanted mixing frequencies must be
ignored, both on the amplitude and frequency convolution
matrix.

One problem that arises from this kind of algorithm is
the use of the entire spectrum, positive and negative, which
represents some wasted time when dealing with real signals.
The way proposed here to overcome this is to ignore the first
lines of the convolution matrix (correspondent to the output

negative spectrum) and then mirror the negative part onto the
positive part. The size of the resulting matrix is equal to the
size of the shaded block shown in Table II.

IV. HERMITE RATIONALS

As already mentioned in Section II, to apply the SB al-
gorithm to a nonlinear device, a polynomial and/or a rational
function must be used as the nonlinear model. There, the state-
of-art in approximants appropriate for SB implementations was
reviewed. We will now present a new type of approximant that
is more suitable for IMD studies.

As is known [20], when strong nonlinearities are to be
approximated, rational functions are better then polynomials
because of their increased range of convergence for the same
number of terms. Thus, a rational approximant must be sought.
Furthermore, since the model’s derivatives play a dominant
role in IMD calculations [10], the approximant must also
accurately represent not only the function, but its derivatives
as well.

A suitable approximant that verifies both conditions is
the Hermite rational [23]. Beyond its rational form, being
a Hermite, means that the approximation osculates with the
function in the first derivatives.

Skipping most of the mathematical parts, described in detail
on [23], we will present the basis and methods to approximate
any function by a Hermite rational.

Consider that a function and all its derivatives are
known. The Hermite rational consists of calculating the fol-
lowing polynomials:

and (5)

so that they verify the condition

and

with

and

(6)
One of the Hermite rational forms is the continued fraction

expansion of Thiele [23]

(7)

Using Thiele’s method, we have

(8)

(9)

Since Hermite rationals can be constructed from data in
analytical or tabular form, any kind of tabular model extracted
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(a) (b)

(c) (d)

Fig. 1. (a) Ids versusVgs. (b) First derivative, (c) second derivative, and (d) third derivative for linear region (VDS = 0 V and VDS = 0:5 V)
and saturation (VDS = 5 V).

(a) (b)

(c) (d)

Fig. 2. (a) Ids versusVds. (b) First derivative, (c) second derivative, and (d) third derivative, for three differentVGS bias pointsVGS = 0 V,
VGS = �0:5 V and VGS = �1 V.

from measurements can also be approximated. By generalizing
this concept, it is also possible to determine Hermite rationals
of multivariate functions [24].

In order to exemplify the technique just explained, an
in-house developed MESFET model [25] will now be approx-
imated using Hermite rationals.

The major devices of nonlinear behavior herein considered
are: the drain–source current , the gate–channel
Schottky junction diode , and the gate–source capaci-
tance [25].

The Hermite rationals adopted use a fifth-degree polynomial
numerator and fourth-degree polynomial denominator for the

hyperbolic tangent that models behavior; and a tenth-
degree polynomial numerator and ninth-degree polynomial
denominator for the other nonlinearities [25].

In Figs. 1 and 2, comparisons between the analytical model
[25] and the rational approximant are given for the functions
and their first three derivatives.

As can be seen, the approximation of an analytical model
by Hermite rationals is a very good choice since it accurately
interpolates the function and its derivatives. If a greater accu-
racy is needed, more terms in the numerator or denominator
polynomials should be used.
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Fig. 3. Schematic diagram of the implemented class-B power-amplifier
prototype.

Fig. 4. HB and SB simulated results and experimental results obtained from
the one-tone excitation of our class-B power amplifier.

V. APPLICATION EXAMPLES

In order to validate the proposed ideas, a microwave class-B
power-amplifier circuit (see Fig. 3) and a multioctave feedback
amplifier were simulated using an in-house developed SB
simulator. To prove the fitness of the proposed algorithm to
the multitone IMD simulation problem, and the Hermite ra-
tional as an adequate nonlinear model approximant, simulated
and measured results of single-tone, two-tone, and spectral
regrowth obtained from the class-B amplifier are compared.

A. Class-B Power Amplifier

This power-amplifier circuit was excited by four different
types of signals:

1) sinusoidal input—one tone;
2) sinusoidal input—two tones;
3) sinusoidal multitone spectra, one carrier amplitude mod-

ulated by a pseudorandom sequence;
4) narrow-band discretized flat continuous spectrum with a

notch.

1) One-Tone Test:Results of one-tone excitation obtained
from a commercial HB package1 and our SB simulator were
compared to the ones measured on the experimental pro-
totype. Fig. 4 reports observed output power levels for the
fundamental, second, and third harmonics.

It can be concluded that, for this case, the differences from
our SB simulator to MDS or to measured data are within the
numerical accuracy.

2) Two-Tone Test:Another classic linearity evaluation, the
two-tone IMD test, was performed, again using our SB simu-
lator, HB, and experimental observed results.

Fig. 5. HB and SB two-tone simulations and experimental results observed
in the implemented class-B amplifier.

Fig. 6. Setup used for multitone spectral-regrowth tests.

The results are presented on Fig. 5 for one of the funda-
mentals and a second- and third-order products at
and .

Although these results are not as good as the previous
ones, they can still be considered in very good agreement.
It should be noted that although there are some small dis-
crepancies between measured and simulated data, SB and HB
results are exactly coincident. This is believed to be due to a
slight imperfection during the active-device-model extraction
procedure.

3) Spectral-Regrowth Test:For predicting spectral-re-
growth behavior, a single carrier modulated by a baseband
pseudorandom sequence was assumed as the input excitation.
In the frequency domain, this is a multitone signal composed
by a certain number of spectral components centered at the
carrier frequency and equally separated by , where
is the sequence-repetition period.

Multitone simulation problems are much more complex, be-
cause of the role played by the phase between spectral samples.
In the laboratory, the phase between tones was obtained by
sampling the baseband signal with a digitizing oscilloscope.
Knowing that this multitone signal can be considered a very
narrow excitation compared with the setup’s bandwidth, we
assumed that the relative spectral samples’ phases are constant
throughout the driving circuit.

The adjustable baseband low-pass filter represented in the
block diagram of Fig. 6 was intended to control the number
of simultaneous driving tones. The input-signal spectrum is
presented in Fig. 7.

Although the calculations determined components’ values
until the fifth harmonic, only the output fundamental and its
associated third- and fifth-order spectral regrowth were plotted
in Fig. 8.



2022 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

Fig. 7. Input-signal spectrum used for multitone spectral-regrowth tests.

Fig. 8. SB simulated and measured output spectrum obtained from a mul-
titone spectral-regrowth test.

By comparing these simulated and experimental results,
it can be easily concluded that our simulator gives a very
good prediction of the real power-amplifier behavior when it
is excited by a single sinusoid, a two-tone, or even multi-
tone signals. In this case, the simulated input signal was an
A.M.-modulated carrier, but since SB algorithm is sensitive
to the phases between spectral samples, it is also possible
to simulateA.M.–P.M. distortion in more complex modulation
schemes.

4) NPR Test:The excitation generally used to perform an
NPR test is a continuous spectrum signal with random phase
since it is derived from a real noise generator. However, if
this laboratory test is to be simulated in a digital computer,
i.e., a finite-state machine, some frequency sampling must be
used [9]. The most obvious way to do that consists of using
a uniform sampling rate, which enables the application of
the above derived formulation. Note that if the envelope-type
simulation [5], [6] was used for that purpose, uniform sampling
of the input and output spectrum was automatically done to
enable the presentation of the analysis results in frequency
domain. In fact, even if the considered envelope was aperiodic
(continuous RF spectrum), the use of the DFT required to
perform the domain data translation, immediately produces an
envelope repetition (spectral sampling) with a period equal to
time-domain simulation duration.

Fig. 9. Output results of the simulated NPR test performed on the class-B
amplifier prototype.

Fig. 10. Simplified schematic diagram of single-stage transimpedance am-
plifier.

Thus, in order to simulate an NPR test, the circuit of Fig. 3
was excited by a signal consisting of a narrow-band discretized
spectrum with a notch that spans from 2.1 to 2.3 GHz. The
phase of each of the 11 samples was considered random.
Fifteen different random phase arrangements were simulated,
and their results averaged. That average result is presented on
Fig. 9.

As was expected, some distortion components appeared
between the two input noise bands. The ratio between the out-
put fundamental signal level and these distortion components
(about 28 dBc) gives a measure of the NPR figure-of-merit
for this power amplifier.

B. Multioctave Amplifier

To prove the application of SB to multioctave bandwidth
circuits, a single-stage feedback transimpedance amplifier,
intended for an optical-fiber TV distribution system, was used
(see Fig. 10).

The simulation of this circuit assumed an input signal
consisting of 32 tones (see Fig. 11) representing 32 channels.
The first channel stands at 46 MHz and the last at 759 MHz.
Different power levels were assigned to each channel for better
representation of a real situation. As is shown in Fig. 11, four
of the channels were shut off to allow correct identification of
the generated spurious signals.
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Fig. 11. Input (.) and output (-) signal spectrum of transimpedance amplifier.

As can be seen from Fig. 11, the amplifier produces a
distortion level that significantly disturbs the output linear
signal components. That is because the amplifier was delib-
erately hard driven in order to subject the nonlinear simulator
to a strong large-signal regime. To our knowledge, this is
the first time that a multitone very wide-bandwidth nonlinear
circuit driven into saturation is simulated. This proves that SB
techniques associated with the indexing vector now proposed
can be efficiently used to solve this type of (until now,
uncovered) simulation problem.

VI. CONCLUSIONS

In this paper, new frequency indexing technique and
convolution-matrix generation, were presented. With this
novel index technique, computer-simulation time and memory
requirements could be relaxed (our simulator prototype run
on a PC), which enabled us to apply the SB algorithm to
otherwise almost untreatable driving signals, e.g., excitations
composed of a large number of tones or, in general, any
uniformly discretized spectrum.

On the other hand, since the proposed convolution-matrix
generation algorithm can be used with any index frequency
vector (and is, to our opinion, more intuitive than the ones
previously published), this work can perfectly integrate all the
other cases already addressed. In fact, when the input-signal
spectrum is not regular, the heavy index-vector generation
algorithm proposed by Steer [14] has to be used. However, if
that spectrum includes a large number of equally spaced tones
(or tones which can be transformed into that), then one should
take advantage of this symmetry by using the now proposed
index-vector generation algorithm.

Moreover, a new way to approximate analytical or tabular
nonlinear models using Hermite rationals was proposed. Since
Hermite rationals use information about the function and its
derivatives, it becomes possible to simultaneously simulate
small- and large-signal behavior.

REFERENCES

[1] L. W. Nagel, “Spice 2: A computer program to simulate semiconductor
circuits,” Memo ERL-M520, Electron. Res. Lab., Univ. California,
Berkeley, 1975.

[2] M. S. Nakhla and J. Vlach, “A piecewise harmonic balance technique for
determination of periodic response of nonlinear systems,”IEEE Trans.
Circuits Syst.,vol. CAS-23, pp. 85–91, Feb. 1976.

[3] V. Rizzoli, C. Cecchetti, and A. Lipparini, “A general-purpose program
for the analysis of nonlinear microwave circuits under multi-tone
excitation by multidimensional Fourier transform,” in17th European
Microwave Conf.,Rome, Italy, Sept. 1987, pp. 635–640.

[4] L. O. Chua and A. Ushida, “Algorithms for computing almost pe-
riodic steady-state response of nonlinear systems to multiple input
frequencies,”IEEE Trans. Circuits Syst.,vol. CAS-28, pp. 953–971,
Oct. 1981.

[5] A. Howard, “Circuit envelope simulator analyzes high-frequency mod-
ulated signals,”RF Design,pp. 36–45, Sept. 1995.

[6] E. Ngoya and R. Larchev`eque, “Envelope transient analysis: A new
method for the transient and steady state analysis of microwave commu-
nication circuits and systems,” inIEEE Microwave Theory Tech. Symp.
Dig., San Francisco, CA, June 18–20, 1996, pp. 1365–1368.

[7] S. Maas,Nonlinear Microwave Circuits. Norwood, MA: Artech House,
1988.

[8] M. B. Steer and P. J. Khan, “An algebraic formula for the output of a
system with large-signal, multifrequency excitation,”Proc. IEEE,vol.
71, pp. 177–179, Jan. 1983.

[9] S. A. Maas, “Volterra analysis of spectral regrowth,”IEEE Microwave
Guided Wave Lett.,vol. 7, pp. 192–193, July 1997.

[10] , “How to model intermodulation distortion,” inIEEE Microwave
Theory Tech. Symp. Dig.,Boston, MA, 1991, pp. 149–151.

[11] V. Rizzoli and A. Neri, “State of the art and present trends in nonlinear
microwave CAD techniques,”IEEE Trans. Microwave Theory Tech.,
vol. 36, pp. 343–364, Feb. 1988.

[12] K. K. M. Cheng and J. K. A. Everard, “Nonlinear circuit analysis
using the Newton–Sor continuation method,”Electron. Lett.,vol. 26,
pp. 2120–2121, Dec. 1990.

[13] K. S. Kundert, J. K. White, and A. Sangiovanni-Vicentelli,Steady-State
Methods for Simulating Analog and Microwave Circuits.Norwell, MA:
Kluwer, 1990.

[14] G. W. Rhyne and M. B. Steer, “Frequency-domain nonlinear circuit
analysis using a frequency-domain harmonic balance technique,”IEEE
Trans. Microwave Theory Tech.,vol. 36, pp. 379–387, Feb. 1988.

[15] T. Närhi, “Analysis of strongly nonlinear circuits with a frequency-
domain method coupled with a consistent large-signal model,” inIEEE
Microwave Theory Tech. Symp. Dig.,Atlanta, GA, 1993, pp. 633–636.

[16] C.-R. Chang, “Computer-aided design of nonlinear microwave analog
circuits using frequency-domain spectral balance,” Ph.D. dissertation,
Dept. Elect. Computer Eng., North Carolina State Univ., Raleigh, NC,
Oct. 1990.

[17] T. Närhi, “Frequency-domain analysis of strongly nonlinear circuits
using a consistent large-signal model,”IEEE Trans. Microwave Theory
Tech.,vol. 44, pp. 182–192, Feb. 1996.

[18] C.-R. Chang, M. B. Steer, and G. W. Rhyne, “Frequency-domain
spectral balance using the arithmetic operator method,”IEEE Trans.
Microwave Theory Tech.,vol. 37, pp. 1681–1688, Nov. 1989.

[19] M. B. Steer, C.-R. Chang, and G. W. Rhyne, “Computer-aided analysis
of nonlinear microwave circuits using frequency-domain nonlinear anal-
ysis techniques: The state of the art,”Int. J. Microwave Millimeter-Wave
Computer-Aided Eng.,vol. 1, no. 2, pp. 181–200, 1991.

[20] E. Van den Eijnde, “Steady-state analysis of strongly nonlinear circuits,”
Ph.D. dissertation, Dept. ELEC, Vrije Universiteit Brussel, Brussels,
Belguim, 1989.

[21] E. Van Den Eijnde and J. Schoukens, “Steady state analysis of a
periodically excited nonlinear systems,”IEEE Trans. Circuits Syst.,vol.
37, pp. 232–242, Feb. 1990.

[22] E. Ngoya, J. Rousset, M. Gayral, R. Quere, and J. Obregon, “Efficient
algorithms for spectra calculations in nonlinear microwave circuits
simulators,” IEEE Trans. Circuits Syst.,vol. 37, pp. 1339–1355, Nov.
1990.

[23] A. Cuyt and L. Wuytack,Nonlinear Methods in Numerical Analy-
sis (Mathematics Studies Series 136). Amsterdam, The Netherlands:
North-Holland, 1991.

[24] A. Cuyt and B. Verdonk, “Multivariate rational interpolation,”Comput-
ing, vol. 34, pp. 41–61, 1985.

[25] J. C. Pedro and J. Perez, “A novel nonlinear GaAs FET model for
intermodulation analysis in general purpose harmonic balance simula-
tors,” in 23rd European Microwave Conf.,Madrid, Spain, 1993, pp.
714–716.



2024 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

Nuno Borges de Carvalho (S’92) was born in
Luanda, Angola, on April 29, 1972. He received
the diploma degree in electronics and telecommuni-
cations engineering from the University of Aveiro,
Aveiro, Portugal, in 1995, and is currently working
toward the Ph.D. degree.

In 1997, he was appointed Assistant Lecturer
at the University of Aveiro. His research interests
include CAD for nonlinear circuits and active device
modeling and design, mainly for power amplifiers.

Mr. Carvalho is a member of the Portuguese
Engineering Association. He was the recipient of the 1995 Best Engineer
Student Award presented by the University of Aveiro. He also received the
Portuguese Engineering Association Prize as the best 1995 student at the
University of Aveiro.
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